Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Системы управления электроприводами

Направление подготовки	13.03.02 Электроэнергетика и электротехника
Направленность (профиль) образовательной программы	Электропривод и автоматика
Квалификация выпускника	бакалавр
Год начала подготовки (по учебному плану)	2019
Форма обучения	заочная
Технология обучения	традиционная

Курс	Семестр	Трудоемкость, з.е.
5	9, 10	10

Вид промежуточной аттестации	Обеспечивающее подразделение
Зачет с оценкой Зачет с оценкой Курсовой	ЭПАПУ
проект	

Разработчик рабочей программы	В.А. Соловьев
Профессор, д.т.н., профессор	« df» 208 г.
СОГЛАСОВАНО	
Директор библиотеки	И.А. Романовская
Заведующий кафедрой (обеспечивающей) «ЭПАПУ»	« <u>ss</u> » <u>о</u> 20 <u>s</u> г. « <u>ss</u> » <u>о</u> <u>С.П. Черный .</u> « <u>ss</u> » <u>о</u> 20 <u>s</u> г.
Заведующий кафедрой (выпускающей) «ЭПАПУ»	<u>С.П. Черный</u> « <u>&\$»</u> <u>Оу</u> 20 <u>/</u> Sr.
Декан факультета « <u>ЭТФ</u> »	<u>А.С. Гудим</u> « <u>ass</u> » <u>oy</u> 20/st.
Начальник учебно-методического управления	—————————————————————————————————————

1 Общие положения

Рабочая программа дисциплины «Системы управления электроприводами» составлена в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Министерства образования и науки Российской Федерации № 144 от 28.02.2018, и основной профессиональной образовательной программы подготовки «Электропривод и автоматика» по направлению 13.03.02 Электроэнергетика и электротехника.

Практическая подготовка реализуется на основе:

Профессиональный стандарт 40.180 «СПЕЦИАЛИСТ В ОБЛАСТИ ПРОЕКТИРО-ВАНИЯ СИСТЕМ ЭЛЕКТРОПРИВОДА».

Обобщенная трудовая функция: А Оформление технической документации на различных стадиях разработки проекта системы электропривода

Задачи	Формирование навыков владения в области автоматизированных систем		
дисциплины	управления электроприводами, анализ, синтез и проектирование систем		
	автоматизированного электропривода.		
Основные	Общие сведения о СУЭП		
разделы / темы	Разомкнутые СУЭП		
дисциплины	Замкнутые СУЭП постоянного тока		
	Замкнутые СУЭП на базе асинхронного двигателя		
	Замкнутые СУЭП на базе синхронного двигателя		
	СУЭП специального назначения		

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Системы управления электроприводами» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код по ФГОС	Индикаторы достижения	Планируемые результаты обу чения по дисциплине	
	Профессиональные		
ПК-2 Готовность к разработке ком-плекта конструкторской докумен-	ПК-2.1 Знает правила составления и выполнения технического задания на разработку проекта системы электропривода	Знать методики выполнения расчётов проекта по разработке системы управления электроприводом для обеспечения требуемых режимов и заданных параметров технологического процесса	
торской документации эскизного, технического и рабочего проектов системы электропривода	ПК-2.2 Умеет осуществлять сбор, обра- ботку и анализ справочной и рефе- ративной информации об оборудо- вании для написания документов, проведения расчетов, выполнения текстовых и графических разделов проекта системы электропривода	Уметь выполнять расчёты проекта по разработке системы управления электроприводом для обеспечения требуемых режимов и заданных параметров технологического процесса	

Код по ФГОС	Индикаторы достижения	Планируемые результаты обучения по дисциплине
	ПК-2.3 Владеет навыками оформления разделов комплектов конструкторских документов эскизного, технического и рабочего проектов системы электропривода	Владеть навыками выполнения технического задания проекта по разработке системы управления электроприводом для обеспечения требуемых режимов и заданных параметров технологического процесса

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина «Системы управления электроприводами» изучается на 4,5 курсе(ах) в 8, 9 семестре(ах).

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к части, формируемой участниками образовательных отношений.

Для освоения дисциплины необходимы знания, умения, навыки <u>и (или) опыт практической деятельности</u>, сформированные в процессе изучения дисциплин / практик: Основы микропроцессорной техники, Общая энергетика, Производственная практика (технологическая практика), Электрический привод.

Знания, умения и навыки, сформированные при изучении дисциплины «Системы управления электроприводами», будут востребованы при изучении последующих дисциплин Проектирование электротехнических систем, Преддипломная практика

Дисциплина «Системы управления электроприводами» частично реализуется в форме практической подготовки. Практическая подготовка организуется путем проведения лекций и практических занятий.

Дисциплина «Системы управления электроприводами» в рамках воспитательной работы направлена на формирование умения аргументировать, самостоятельно мыслить, развивает творчество, профессиональные умения.

Входной контроль не проводился

4 Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 10 з.е., 360 акад. час. Распределение объема дисциплины (модуля) по видам учебных занятий представлено в таблице 2.

Таблица 2 – Объем дисциплины (модуля) по видам учебных занятий

Объем дисциплины	Всего академи- ческих часов
Общая трудоемкость дисциплины	360
Контактная аудиторная работа обучающихся с преподавателем (по видам учебных занятий), всего	22
В том числе:	
занятия лекционного типа (лекции и иные учебные занятия, предусматривающие преимущественную передачу учебной информации пе-	10

Объем дисциплины	Всего академи- ческих часов
дагогическими работниками)	
в том числе в форме практической подготовки:	2
занятия семинарского типа (семинары, практические занятия, прак-	12
тикумы, лабораторные работы, коллоквиумы и иные аналогичные за-	
(киткн	
в том числе в форме практической подготовки:	2
Самостоятельная работа обучающихся и контактная работа, вклю-	
чающая групповые консультации, индивидуальную работу обучаю-	
щихся с преподавателями (в том числе индивидуальные консультации);	
взаимодействие в электронной информационно-образовательной среде	330
вуза	
Промежуточная аттестация обучающихся – Зачет с оценкой Зачет с	8
оценкой Курсовой проект	0

5 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

Таблица 3 – Структура и содержание дисциплины (модуля)

Наименование разделов, тем и содержание материала	ятельную Контакть	бной работы работу обучемкость (в ная работа пр с обучающи Семинарские (практи-	нающихся и в часах) реподава-	
		ческие		
9 семес	<u> </u> гр	занятия)		
Общие сведения о СУЭП. Назначение и функции СУЭП. Классификация и способы описания СУЭП. Принципы построения СУЭП. Общие сведения об электроприводах с управлением по жесткой программе. Релейно- контакторные СУЭП. Дискретно-логические СУЭП: математическое описание; методы синтеза СУЭП; построение дискретно-логических СУЭП на основе цифровых узлов. Защиты электроприводов: аварийные режимы, причины возникновения, последствия; виды защит электроприводов;	2			39
Синтез релейно-контакторных схем управления двигателем постоянного тока.		4		

	Виды учебной работы, включая са ятельную работу обучающихся и емкость (в часах) Контактная работа преподава-			
Наименование разделов, тем и содержание материала	теля Лекции	с обучающи Семинар- ские (практи- ческие занятия)	мися Лабора- торные занятия	
Разомкнутые СУЭП. Регулирование скорости электропривода постоянного тока: регулирование по возмущению и по отклонению при помощи управляемых преобразователей постоянного тока; Техническая реализация регуляторов; области применения и рекомендации по выбору структуры СУЭП для регулирования нескольких координат.	2			47
Составление, сборка и наладка схемы автоматического управления асинхронным электроприводом на бесконтактных элементах			4	
Методики расчета разомкнутых систем управления электроприводами постоянного тока.		2		
Принципиальные электрические, функциональные и структурные схемы СУЭП; математические модели СУЭП, линеаризация и упрощение моделей. Принципы построения СУЭП				12
Замкнутые СУЭП постоянного тока. Системы с суммирующим усилителем: реализация процесса суммирования нескольких входных сигналов; типовые обратные связи по скорости, ЭДС, току, напряжению, особенности их реализации; форсировки и отсечки; статические и динамические характеристики СУЭП. Системы подчиненного регулирования координат: настройка внутреннего контура, оптимизация динамики, требования к желаемой ЛАХ; стандартные настройки регуляторов на технический и симметричный оптимум; настройка внешнего контура; динамические характеристики*.	4 2*			54
характеристики*. Исследование непрерывной системы стабилизации скорости с суммирующим усилителем. Исследование системы тиристорный выпрямитель-двигатель.			4	

	Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах)			
	Контакті	ная работа пр		CPC
Наименование разделов, тем и содержание ма-	теля	с обучающи	мися	
териала	Лекции	Семинар-	Лабора-	
-		ские	торные	
		(практи-	занятия	
		ческие		
		занятия)		
ИТОГО	10	6	8	152
по дисциплине (7 семестр)	10	0	0	132
10 семес	тр	•		
Замкнутые СУЭП на базе асинхронного				
двигателя.				
Особенности асинхронных электроприводов:				
особенности асинхронного двигателя как объ-				
екта управления; классификация способов ре-				
гулирования координат асинхронного элек-				
тродвигателя; допущения, принимаемые при				
построении СУЭП на базе асинхронного дви-				
гателя.				
Регулирование координат изменением напря-				
жения: управление асинхронными двигателя-				
ми регулированием напряжения статора;	_			22
управление асинхронными двигателями регу-	6			32
лированием напряжения ротора.				
Скалярное частотное управление: разомкну-				
тые системы управления, законы частотного				
регулирования; замкнутые системы управле-				
ния с обратными связями по скорости, по току,				
по скольжению; оптимальные системы ча-				
стотного управления. Частотно-токовое управление: особенности				
систем частотно токового управления, основ-				
ные способы коррекции; способы реализации				
источника тока; типовые структуры систем				
частотно-токового управления				
Изучение влияния типа обратной связи на ста-				
тические и динамические характеристики за-			4	
мкнутой системы.				
Расчет СУЭП постоянного тока замкнутого				
типа.		4		
Расчет СУЭП постоянного тока замкнутого		4		
типа с суммирующим усилителем.				
Расчет СУЭП постоянного тока с подчинен-		2*		
ным регулирование координат.		_		
Анализ заданий на КП и подбор технической				
литературы по тематике КП.				30
Анализ и расчет силовой части СУЭП.				30
Структуры СУЭП асинхронным двигателем				

		бной работы работу обуч емкость (н	нающихся и	
Наиманования раздалов, там и содаручания ма		емкость (н ная работа пр с обучающи	еподава-	CPC
Наименование разделов, тем и содержание ма-			1	
териала	Лекции	Семинар-	Лабора-	
		ские	торные	
		(практи-	занятия	
		ческие		
		занятия)		
при управлении изменением напряжения.				
Расчет и построение статических характери-				
стик силовой части электропривода и всей си-				
стемы в целом.				
Составление структурной схемы электропривода. Расчет динамических режимов электропривода.				
Замкнутые СУЭП на базе синхронного дви-				
гателя.				
Синхронные электроприводы: регулирование				
возбуждения; частотно-токовое регулирование				
момента синхронного электродвигателя;				
управление синхронным электроприводом с				
регулированием продольной и поперечной со-	2			20
ставляющих тока статора.				
Электроприводы на базе вентильного двигате-				
ля: особенности конструкции вентильных дви-				
гателей; структура системы управления и				
настройки регуляторов для электроприводов				
на базе вентильных двигателей.				
Исследование замкнутой системы «Преобразова-				
тель частоты – асинхронный двигатель			4	
Расчет и выбор параметров преобразователя				
частоты для системы частотного регулирова-		2		
ния				
Синтез регуляторов и расчет их параметров.				
Моделирование переходных процессов элек-				1.6
тропривода в линеаризованной системе управ-				16
ления.				
СУЭП специального назначения.				
Управление положением и следящие электро-				
приводы: задачи позиционирования и слеже-				
ния, требования к электроприводам; типовые				
узлы систем управления позиционным элек-				
троприводом постоянного и переменного тока;				
структурные схемы и основные элементы сле-	2			20
дящего электропривода; статические и дина-				
мические характеристики; способы повыше-				
ния точности.				
Программное управление: классификация си-				
стем программного управления; общая струк-				
тура систем числового программного управле-	i	1	1	i
мические характеристики; способы повышения точности. Программное управление: классификация систем программного управления; общая струк-				

	Виды учебной работы, включая самостоятельную работу обучающихся и трудоемкость (в часах)				
		ная работа пр		CPC	
Наименование разделов, тем и содержание ма-		с обучающи	мися		
териала	Лекции	Семинар-	Лабора-		
		ские	торные		
		(практи-	занятия		
		ческие			
		занятия)			
ния; особенности сопряжения устройств чис-					
лового программного управления с электро-					
приводом; алгоритмы работы электроприводов					
с числовым программным управлением					
Моделирование переходных процессов элек-					
тропривода с учетом ограничений.				34	
Разработка принципиальной схемы управле-				34	
ния системой электропривода и ее описание.					
ИТОГО	10		0	1.50	
по дисциплине (8 семестр)	10	6	8	152	
ИТОГО	20	12	16	204	
по дисциплине	20	12	16	304	

^{*} реализуется в форме практической подготовки

6 Внеаудиторная самостоятельная работа обучающихся по дисциплине (модулю)

При планировании самостоятельной работы студенту рекомендуется руководствоваться следующим распределением часов на самостоятельную работу (таблица 4):

Таблица 4 – Рекомендуемое распределение часов на самостоятельную работу

Компоненты самостоятельной работы	Количество часов
Изучение теоретических разделов дисциплины	210
Подготовка к занятиям семинарского типа	26
Подготовка и оформление курсового проекта	78
Подготовка и оформление расчетно-графической работы	16
	330

7 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Таблица 5 – Паспорт фонда оценочных средств

Контролируемые разделы (темы) дисциплины	Формируемая компетенция	Наименование оценочного средства	Показатели оценки		
8 семестр					

Разделы 1,3	ПК-2	Тест	Правильность выполнения	
			задания	
Разделы 1,3	ПК-2	Лабораторные	Аргументированность от-	
		работы	ветов	
Разделы 1,3	ПК-2	Практические	Полнота и правильность	
		задания	выполнения задания	
Разделы 1,3	ПК-2	Расчетно-	Полнота и правильность	
		графическая	выполнения задания	
		работа		
		9 семестр		
Разделы 4,6	ПК-2	Лабораторные	Аргументированность от-	
		работы	ветов	
Разделы 4,6	ПК-2	Практические	Полнота и правильность	
		задания	выполнения задания	
Разделы 4,6	ПК-2	Курсовой	Полнота и правильность	
		проект	выполнения задания	

Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, представлены в виде технологической карты дисциплины (таблица 5).

Таблица 6 – Технологическая карта

	Наименование оценочного средства		Сроки выполнения		Шкала оцени- вания	Критерии оценивания
	ogeno moro e	редетва	8 семестр		Биния	оценивания
	Промеж	суточная ат			ме Зачет с оценк	сой
1	Тест	в течение семестра	9 баллов	вет 6 б вет 3 б тог 0 б	баллов — 81-100 % гов — высокий уро баллов — 61-80 % гов — достаточно в аний; балла — 41-60 % пр в — средний урове баллов — 0-40 % пр в — очень низкий у	вень знаний; правильных от- высокий уровень равильных отве- нь знаний; равильных отве-
2	Лабораторная работа 1	в течение семестра	3 балла	3 б зна	балла – студент по ания, умения и на	оказал отличные выки при реше-
3	Лабораторная работа 2	в течение семестра	3 балла	ках	и профессиональн х усвоенного учеб	ного материала.
4	Лабораторная работа 3	в течение семестра	3 балла	3Н8	балла – студент п ания, умения и на и профессиональн	выки при реше-
5	Практическое задание 1	в течение семестра	3 балла	ках	х усвоенного учеб балл – студент 1	ного материала.
6	Практическое задание 2	в течение семестра	3 балла	ТВО	орительное владе ениями и навыка	ение знаниями,
7	Практическое задание 3	в течение семестра	3 балла	пр	офессиональных военного учебного	задач в рамках
8	Выполнение РГР	в течени семестра	е 3 балла		баллов – студент п вал недостаточны	• •

	Наименов	ание		Ср	оки		Шкала оцени-	Критерии
	оценочного средства		выполнения		Я	вания	оценивания	
						дения знаниями, умениями и навы-		
						ками при решении профессиональ-		рофессиональ-
						ных задач в рамках усвоенного		своенного
						учебного материала.		
ИТС	ОГО 9 семестр			30	бал-			
				ЛОВ				

Критерии оценки результатов обучения по дисциплине:

- 0 64 % от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);
- 65 74 % от максимально возможной суммы баллов «удовлетворительно» (пороговый (минимальный) уровень);
- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85 100 % от максимально возможной суммы баллов «отлично» (высокий (максимальный) уровень)

8 семестр Промежуточная аттестация в форме Зачет с оценкой

	Промежуточная аттестация в форме Зачет с оценкои						
1	Лабораторная	в течение	3 балла	3 балла – студент показал отличные			
	работа 1	семестра		знания, умения и навыки при реше-			
2	Лабораторная	в течение	3 балла	нии профессиональных задач в рам-			
	работа 2	семестра		ках усвоенного учебного материала. 2 балла – студент показал хорошие			
3	Лабораторная	в течение	3 балла	знания, умения и навыки при реше-			
	работа 3	семестра		нии профессиональных задач в рам-			
7	Практическое	в течение	3 балла	ках усвоенного учебного материала.			
	задание 1	семестра		1 балл – студент показал удовле-			
8	Практическое	в течение	3 балла	творительное владение знаниями,			
	задание 2	семестра		умениями и навыками при решении			
9	Практическое	в течение	3 балла	профессиональных задач в рамках			
	задание 3	семестра		усвоенного учебного материала.			
				0 баллов – студент продемонстри-			
				ровал недостаточный уровень вла-			
				дения знаниями, умениями и навы-			
				ками при решении профессиональ-			
				ных задач в рамках усвоенного			
				учебного материала.			
ИТС	ОГО 10 семестр	-	18 бал-	-			
			ЛОВ				

Критерии оценки результатов обучения по дисциплине:

- 0 64 % от максимально возможной суммы баллов «неудовлетворительно» (недостаточный уровень для промежуточной аттестации по дисциплине);
- 65 74 % от максимально возможной суммы баллов «удовлетворительно» (пороговый (минимальный) уровень);
- 75 84 % от максимально возможной суммы баллов «хорошо» (средний уровень);
- 85 100 % от максимально возможной суммы баллов «отлично» (высокий (максимальный) уровень)

8 семестр

Промежуточная аттестация в форме Курсовой проект

По результатам защиты курсового проекта (работы) выставляется оценка по 4-балльной шкале оценивания

- оценка *«отлично»* выставляется студенту, если в работе содержатся элементы научного творчества и делаются самостоятельные выводы, достигнуты все результаты, указанные в задании, качество оформления отчета соответствует установленным в вузе требованиям и при защите студент проявил отличное владение материалом работы и способность аргументировано отвечать на поставленные вопросы по теме работы;
- оценка *«хорошо»* выставляется студенту, если в работе достигнуты все результаты, указанные в задании, качество оформления отчета соответствует установленным в вузе требованиям и при защите студент проявил хорошее владение материалом работы и способность аргументировано отвечать на поставленные вопросы по теме работы;
- оценка *«удовлетворительно»* выставляется студенту, если в работе достигнуты основные результаты, указанные в задании, качество оформления отчета в основном соответствует установленным в вузе требованиям и при защите студент проявил удовлетворительное владение материалом работы и способность отвечать на большинство поставленных вопросов по теме работы;
- оценка *«неудовлетворительно»* выставляется студенту, если в работе не достигнуты основные результаты, указанные в задании или качество оформления отчета не соответствует установленным в вузе требованиям, или при защите студент проявил неудовлетворительное владение материалом работы и не смог ответить на большинство поставленных вопросов по теме работы.

Задания для текущего контроля ТЕСТ

1. В замкнутой системе с суммирующем усилителем и отрицательной обратной связью по скорости, работавшей в установившемся режиме со скоростью равной $\omega=52c^{-1}$, произошел обрыв обратной связи. Что произойдет со скоростью вращения двигателя? Номинальные данные двигателя: $P_{\rm H}=2.5~{\rm kBT},~U_{\rm H}=220~{\rm B},~I_{\rm H}=14.1~{\rm A}~R_{\rm SH}=1.37~{\rm OM},~\omega_{\rm H}=104~c^{-1},~J=0.07~{\rm kгm}^2$; преобразователя – $K_{\rm H}=22.5~{\rm KBT},~U_{\rm H}=22.5~{\rm KBT},~U_{\rm H}=1.0000~{\rm C}$ суммирующего усилителя – $K_{\rm H}=10.000~{\rm C}$

Ответы:

2. Достигнет предельного значения, преобразователя.

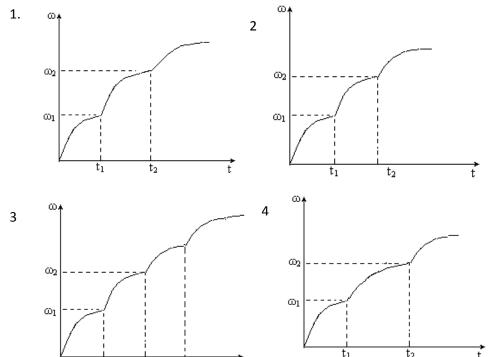
определяемого ограничением выходной эдс

3. Достигнет номинального

- 4. Уменьшится до нулевого значения значения.
- 2. В двухконтурной системе подчиненного регулирования с Π -регулятором скорости и Π И-регулятором тока статическая просадка скорости при изменении момента нагрузки от 0 до 0,5 $M_{\rm H}$ составит:

$$1.\Delta\omega = 0 \text{ c}^{-1}$$
 2. 2,32 c⁻¹ 3. $\Delta\omega = 104 \text{ c}^{-1}$ 4. 4.64 c⁻¹

При определении просадки скорости считать номинальные данные двигателя: $P_{\rm H}=2.5~{\rm kBT},\,U_{\rm H}=220~{\rm B},\,I_{\rm H}=14.1~{\rm A}$ $R_{\rm gH}=1.37~{\rm OM},\,\omega_{\rm H}=104~{\rm c}^{-1},\,\,J=0.07~{\rm kгM}^2$; преобразователя – $K_{\rm \Pi}=22,\,\,T_{\rm \Pi}=0.003$ с, постоянная якорной цепи $T_{\rm gH}=0.024$ с, $R_{\rm gH}=1.7~{\rm OM},\,T_{\rm H}=0.003$.


3. В двухкратноинтегрирующей системе стабилизации скорости с подчиненным контуром тока, время восстановления скорости и величина динамической просадки скорости при скачкообразном изменении нагрузки от нуля до номинальной составят:

1.
$$\Delta\omega_{\text{дин}} = 9.3 \text{ c}^{-1}$$
, $t_{\text{восст}} = 0.096 \text{ c}$.
2. $\Delta\omega_{\text{дин}} = 6.3 \text{ c}^{-1}$, $t_{\text{восст}} = 0.06 \text{ c}$.
3. Динамическая просадка скорости 4. $\Delta\omega_{\text{дин}} = 10.4 \text{ c}^{-1}$, $t_{\text{восст}} = 0.03 \text{ c}$

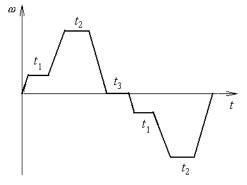
При определении просадки скорости считать номинальные данные двигателя: $P_{\rm H}=2.5~{\rm kBT},\,U_{\rm H}=220~{\rm B},\,I_{\rm H}=14.1~{\rm A}$ $R_{\rm gH}=1.37~{\rm OM},\,\omega_{\rm H}=104~{\rm c}^{-1},\,\,J=0.07~{\rm kгM}^2$; преобразователя – $K_{\rm \Pi}=22,\,\,T_{\rm \Pi}=0.003$ с, постоянная якорной цепи $T_{\rm gll}=0.024$ с, $R_{\rm gll}=1.7~{\rm OM},\,T_{\rm L}=0.003$.

ия.

4. Какой из ниже приведенных графиков $\omega = f(t)$ соответствует разгону двигателя в две ступени в функции скорости и почему?

- 5. При включении на входе двухконтурной системы подчиненного регулирования задатчика интенсивности с темпом изменения выходного сигнала $\frac{dU_{3u}}{dt} = \frac{d\omega}{dt} = A$ в системе будет наблюдаться:
- 1. ограничение предельного темпа изменения скорости на уровне А, снижение величины перерегулирования скорости, при зависимости электромагнитного момента двигателя от момента инерции и момента нагрузки.
- 2. темп разгона двигателя будет определяться динамическими характеристиками системы, перерегулирование скорости будет определяться настройкой регуляторов системы.
- 3. ограничение максимального значения тока якоря и как следствие темпа изменения скорости, а также независимости электромагнитного момента двигателя от момента инерции и момента нагрузки.
- 4. динамические характеристики системы не будут зависеть от параметров задатчика интенсивности.

Лабораторные работы


- 1. Синтез релейно-контакторных схем управления двигателем постоянного тока
- 1. Что такое управление пуском и торможением двигателя постоянного тока независимого возбуждения в функции времени и в чем основные достоинства и недостатки этого способа управления?
- 2. 2. Что такое управление пуском и торможением в функции скорости и в чем основные достоинства и недостатки этого способа управления?
- 3. Что такое управление пуском и торможением двигателя постоянного тока независимого возбуждения в функции тока и в чем достоинства и недостатки этого способа управления?
- 4. 4. Как рассчитать пусковые и тормозные сопротивления?
- 5. 5. Как рассчитать уставки реле времени при пуске и торможении в функции времени?
- 6. 6. Как рассчитать уставки реле времени при пуске и торможении в функции скорости?
- 7. 7. Как рассчитать уставки реле тока при пуске и торможении в функции тока?
 - 2. Исследование релейно-контакторной защиты электроприводов

- 1. Как реализуется автоматическое управление в функции времени пуском двигателя постоянного тока в схеме исследуемого электропривода?
- 2. Как реализуется автоматическое управление динамическим торможением двигателя в схеме исследуемого электропривода?
- 3. Как рассчитываются уставки электрических аппаратов, управляющих автоматическим пуском и торможением в схеме исследуемого электропривода?
- 4. Как рассчитываются значения пусковых и тормозных сопротивлений в схеме исследуемого электропривода?
- 5. Какие защиты предусмотрены в схеме исследуемого электропривода и как рассчитываются их уставки?
- 6. В чем достоинства и недостатки автоматического управления пуском в функции времени?
- 7. В чем достоинства и недостатки автоматического управления торможением двигателя в функции скорости?
- 3. Составление, сборка и наладка схемы автоматического управления асинхронным электроприводом на бесконтактных элементах
 - 1 Поясните работу бесконтактного узла "память"?
 - 2 Каким образом осуществляется выдержка времени в элемент задержки?
 - 3 Запишите таблицу истинности для элементов 4 И-НЕ, 3 ИЛИ-НЕ.
- 4 Какую функцию выполняют усилители в бесконтактных схемах управления, например И404?
- 5 B чем заключается достоинства и недостатки бесконтактных датчиков положения?
- 6 Каким параметром характеризуется нагрузочная способность бесконтактного логического элемента?
- 4. Изучение элементов систем управления электропривода
 - 1. Для чего служит задатчик интенсивности?
 - 2. Чем реализуется темп нарастания напряжения задатчика интенсивности?
 - 3. Как ограничивается уровень выходного напряжения задатчика интенсивности?
- 4. Что такое регулятор и какие функции он выполняет в замкнутой системе регулирования?
- 5. Какие существуют схемы ограничения выходного сигнала операционного усилителя? Каковы их принципы действия?
 - 6. Как расчетным путем определить передаточную функцию регулятора?
 - 7. Как экспериментально определить параметры П-, ПИ-, И- регуляторов?
- 8. Почему в разомкнутых контурах регулирования не допускается работа аналогово регулятора в интегрирующем режиме?
- 5. Исследование системы подчиненного регулирования с внешним контуром скорости
 - 1. С какой целью и на каких этапах исключаются конденсаторы в регуляторах РС и РТ?
- 2. С какой целью и на каких этапах настройки системы электропривода в цепь якоря ДПТ вводится добавочный резистор модуля добавочных сопротивлений №2?
 - 3. При каких настройках отключается возбуждение ДПТ?
 - 4. Как определить знак обратной связи по току в контуре тока?
 - 5. Как определить знак обратной связи по скорости в контуре регулирования скорости?
- 6. Как экспериментально на стенде выставить и проверить величину коэффициента усиления П-канала регулятора?
- 7. С какой целью статическая характеристика регулятора скорости выполнена с насыщением?

- 8. Какие показатели процессов нужно обеспечить при настройке регулятора тока?
- 9. Какие показатели процессов нужно обеспечить при настройке регулятора скорости?
- 10. С помощью каких узлов формируется прямоугольная токовая диаграмма при разгоне лабораторного электропривода?
 - 11. Как выставить требуемую величину тока упора ДПТ?
- 6. Исследование замкнутой системы «преобразователь частоты- асинхронный двигатель»
- 1. Объясните принцип работы импульсного датчика частоты вращения. Как осуществляется определение направления вращения двигателя?
 - 2. Что такое система подчиненного регулирования?
 - 3. Почему на практике обычно не используют ПИД-регулятор скорости?
- 4. Какие показатели переходного процесса необходимо обеспечить при настройке контура скорости?

Практические задания

Практическое занятие 1. Решение задач по расчеты разомкнутых СУЭП. Составить релейно-контакторную схему управления электроприводом, работающим в повторно-кратковременном режиме и реализующим следующую тахограмму:

Двигатель переменного тока, число ступеней пуска m=3, пуск в функции скорости, торможение противовключением в функции времени.

Управление от кнопочного поста.

Практическое занятие 2. Решение задач по расчеты замкнутых СУЭП с суммирующим усилите-

лем.

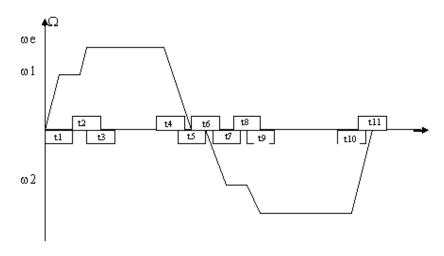
Для замкнутой системы стабилизации скорости с отрицательной обратной связью по скорости и задержанной по току определить напряжение сравнения в цепи обратной связи по току и значение коэффициента передачи этой обратной связи для нижеприведённых параметров системы:

Двигатель П143-4К; $P_{_H}$ =200 кВт; $n_{_H}$ =400 об/мин; $\eta_{_H}$ =91,6%; $U_{_H}$ =440 В; $I_{_{SH}}$ =497 А. Коэффициенты передачи: суммирующего усилителя K_a =10;

преобразователя $K_{I\!I}$ =46; датчика скорости K_{C} =0,24 Вс; напряжение задания U_{3} =8 В. ток стопорения I_{cm} =994 А; I_{omc} =800 А.

Практическое занятие 3. Решение задач по расчеты замкнутых СУЭП с подчиненным регулированием (реализуется в форме практической подготовки) Для двух контурной системы подчиненного регулирования, реализованной на базе АВК определить параметры регуляторов тока и скорости из условия, что система должна работать в режиме стабилизации скорости с нулевой статической ошибкой. Данные для расчета: Двигатель 4АНК со следующими параметрами: $P_{\rm H}$ =200кВт, $\omega_{\rm H}$ =101,5 1/c, $I_{\rm 2}$ =411A, $E_{\rm 2H}$ =304 B, $\omega_{\rm 0}$ = 104,7 1/c, $R_{\rm 1}$ =0,025 Ом, $X_{\rm 1}$ =0,13 Ом, $R_{\rm 2}$ =0,27 Ом, $R_{\rm 2}$ =0,16 Ом, $R_{\rm 1}$ =7,8 кгм². Параметры инвертора: $R_{\rm 1}$ =460 B, $R_{\rm 1}$ =800 A, $R_{\rm 1}$ =0,016 Ом. $R_{\rm 1}$ =0.06 Ом. Параметры сглаживающего дросселя: $R_{\rm 1}$ =2,3*10⁻³ Гн, $R_{\rm 1}$ =4,7*10⁻³ Ом.

Практическое занятие 4. Решение задач по расчеты замкнутых СУЭП с асинхронными двигателями


Для замкнутой системы стабилизации скорости с отрицательной обратной связью по скорости, построенной на базе ТРН -АД определить требуемый коэффициент суммирующего усилителя, который обеспечивал бы статизм замкнутой системы на уровне δ =0,03 при заданном диапазоне регулирования скорости в системе D =10.

Данные двигателя : $P_{2\text{H}}$ =90 кВт; $U_{1\text{л}}$ = 380 B; $\cos\varphi_{\text{H}}$ = 0,9; $I_{1\text{H}}$ = 162,9 A; Ω_{O} = 157 1/c; M_{H} = 581,8 H м; M_{K} = 1338 H м; S_{H} = 0,013; S_{K} = 0,095; J=1,2 кг м2; x_{μ} = 6,75 Ом; x_{1} = 0,125 Ом; R_{1} = 0,032 Ом; R_{2} = 0,16 Ом; R_{2} = 0,019 Ом; R_{K} = 0,2 Ом;

Расчетно-графическая работа

Каждому студенту необходимо выполнить синтез релейно-контакторной схемы управления двигателем.

Для приведенной на рисунке тахограммы составить схему управления, рассчитать и выбрать все элементы схемы. Необходимые для расчета данные приведены в таблице 8.

- 0 t.1 разгон привода на первых двух ступенях пускового реостата;
- t.1-t.2 работа привода в установившемся режиме с скоростью $\omega 1$, определяемой второй ступенью пускового реостата;
- t.2 t.3 разгон привода на третьей ступени пускового реостата и на естественной характеристике;
- t.3 t.4 работа привода в установившемся режиме на естественной характеристике;
- t.4 t.5 торможение привода;
- t.5 t.6 пауза (останов) привода;
- t.6 t.7 разгон привода на первых двух ступенях пускового реостата в противоположную сторону;
- t.7 t.8 работа привода в установившемся режиме с скоростью $\omega 2$, определяемой второй ступенью пускового реостата;
- t.8 t.9 разгон привода на третьей ступени пускового реостата и на естественной характеристике в направлении назад;
- t.9 t.10 работа привода в установившемся режиме на естественной характеристике в направлении назад;
- t.10 t.11 торможение привода.
- При разработке схемы управления предусмотреть следующие виды защит:
- защиту от токов короткого замыкания силовой цепи и цепи управления;
- тепловую защиту;
- защиту от обрыва поля или фазы.
 - Рассчитать уставки срабатывания защит и выбрать защитную аппаратуру.

При расчете пусковой диаграммы считать момент нагрузки на валу двигателя равным 0.8 Мном.

Таблица 8

Тип двигателя	Мощность	Управление	Вид торможения	Управление
	(кВт)	пуском в		торможением в
		функции:		функции:
4AHK180S4У3	22	времени	динамическое	времени
4АНК200М4У3	37	скорости	противовкл.	времени
4АНК250SВ4У3	90	времени	динамическое	скорости
4AHK280S4У3	132	скорости	противовкл.	скорости
4АНК355S4У3	315	времени	противовкл.	времени
4АНК250SB6У3	55	скорости	динамическое	скорости
4АНК355S6У3	200	времени	противовкл.	скорости
4АНК255М8У3	30	скорости	динамическое	времени
4АНК280S8У3	75	времени	комбинированное	времени
4АНК355Ѕ8У3	160	скорости	комбинированное	времени

Задания для промежуточной аттестации

Курсовой проект

Для заданных функциональных схем систем электропривода электро необходимо выполнить:

- I) Подробно проанализировать техническое задание и выяснить исходные данные для выбора системы автоматического регулирования (САУ): режим работы привода, способ управления силовым источником питания привода, диапазон регулирования, требования к точности в установившемся и переходном режимах, характерные возмущения, цель управления (стабилизация какого-либо параметра скорости, тока, момента, слежение по углу, скорости, току, программное регулирование и т.д.).
- 2) Для заданного двигателя произвести выбор силового преобразователя с учетом способа управления им. Выбрать также все элементы главной цепи (дроссели, сопротивления и другие).
- 3) Выбрать коэффициент усиления системы по требуемой точности и выяснять возможность реализации его в данной системе электропривода.
- 4) Выбрать необходимые датчики (скорости, тока, напряжения и другие) с учетом точности, нагрузки и их конструктивных особенностей.
- 5) Выбрать устройства управления (усилители, устройства задания, потенциальные развязки, регуляторы и другие.), обращая внимание на согласование устройств между собой по току и по напряжению.
- 6) Выбрать устройства защиты, сигнализации и коммутации (автоматические выключатели, реле, контакторы, датчики защит и другие устройства).
- 7) Подготовить данные для динамического и статического расчета системы: определить коэффициенты усиления и постоянные времени звеньев системы, возможность их линеаризации или необходимость учета нелинейностей. Определить передаточные функции звеньев и составить структурную схему системы электропривода.
- 8) Произвести статический расчет системы (если он необходим) и построить статические характеристики во всем диапазоне изменения параметров задания и нагрузки.
 - 9) Проверить систему на устойчивость, выявить области и запас устойчивости.

- 10) При неустойчивой системе или при неудовлетворительном запасе устойчивости системы произвести ее коррекцию. Для этого следует задаться желаемой логарифмической характеристикой и найти корректирующее звено последовательной или параллельной коррекции, выбрать элементы стабилизации, уточнить обратные связи в системе.
- 11) Проверить качество системы, для чего построить переходной процесс по управлению и по возмущению аналитическим, численным или графическим методом. Если качество не удовлетворяет требованиям, то либо вторично корректировать систему, либо, если это возможно, пересмотреть требования.
 - 12) Составить принципиальную схему разработанного электропривода.

В курсовом проекте расчет переходных процессов в системе и проверку качества системы целесообразно проводить с использованием средств цифровой вычислительной техники. Для расчета на ЭВМ переходных процессов рекомендуется использовать программы PSM, использующие в качестве исходных данных для расчета структурную схему системы, записанную в передаточных функциях.

ИСХОДНЫЕ ДАННЫЕ ДЛЯ ПРОЕКТИРОВАНИЯ СИСТЕМЫ

В задании на курсовой проект приводится функциональная схема системы и следующие основные исходные данные:

- 1) напряжение питающей сети;
- 2) тип, мощность и скорость вращения электродвигателя;
- 3) диапазон регулирования скорости;
- 4) момент инерция механизма, приведенный к валу двигателя;
- 5) точность стабилизации или слежения:
- 6) допустимое перерегулирование и максимальное время переходного процесса.

Остальные исходные данные должны выбираться самостоятельно на основании изучения систем электропривода. В числе некоторых таких дополнительных исходных данных могут быть:

- 1) технические данные электродвигателя (номинальный ток, напряжение, момент инерции якоря, индуктивность обмоток и другие данные), которые выбираются из справочной литературы и каталогов, данные некоторых двигателей приведены в разделе 19 данных методических указаний;
 - 2) величина допустимых перегрузок и необходимость токоограничения;
 - 3) способ управления преобразователем.

Принятые дополнительные данные и допущения кратко излагаются в расчетно-пояснительной записке после записи задания на курсовое проектирование.

8 Учебно-методическое и информационное обеспечение дисциплины (модуля)

8.1 Основная литература

- 1. Терехов, В.М. Системы управления электроприводов: Учебник для вузов / В.М. Терехов, О.И. Осипов. Москва : Академия. 2008. 301 с.
- 2. Зимин, Е.Н. Автоматическое управление электроприводами: Учебное пособие для вузов по спец. "Электропривод и автоматизация промышленных установок"/ Е.Н. Зимин, В.И. Яковлев. Москва: Высшая школа. 1979. 318с.
- 3. Панкратов, В.В. Автоматическое управление электроприводами. Часть І. Регулирование координат электроприводов постоянного тока: учебное пособие / В.В. Панкратов. Новосибирск: Новосибирский государственный технический университет, 2013. 200 с. // IPRbooks : электронно-библиотечная система. —

URL: **http://www.iprbookshop.ru/45357.html** (дата обращения 25.05.2021). – Режим доступа по подписке.

8.2 Дополнительная литература

- 1. Справочник по проектированию автоматизированного электропривода и систем управления технологическими процессами. 3-е изд., перераб. и доп. Под ред. В.И.Круповича. М.: Энергоиздат, 1982. 416с.
- 2. Справочник по автоматизированному электроприводу. Под ред. В.А.Елисеева, А.В.Шинянского. М.: Энергоатомиздат, 1983. 616с.

8.3 Методические указания для студентов по освоению дисциплины (при наличии)

1. Соловьев, В.А. Землянская Е.Н. Системы управления ми/ Лабораторный практикум. Утв. в кач.лабораторного практикума Учёным советом ФГБОУ ВПО "Комсомольский-на-Амуре гос.техн.ун-т". 93с. Изд-во Комсомольского-на-Амуре гос.техн.ун-та, 2015

8.4 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

- 1. ZNANIUM.COM : электронно-библиотечная система : сайт. URL: http://www.znanium.com (дата обращения: 25.05.2021).
- 2. IPRbooks : электронно-библиотечная система: сайт. URL: http://www.iprbookshop.ru (дата обращения: 25.05.2021)
- 3. consultant.ru: информационно-справочная система «Консультант плюс» : сайт. Москва, 2021 . URL: http://www.consultant.ru (дата обращения: 25.05.2021). Режим доступа: для зарегистрир. пользователей.

8.5 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

- 1) Школа для электрика / http://electricalschool.info/elprivod/.
- 2) Частотно-регулируемый асинхронный электропривод курс лекций http://www.electrolibrary.info/58-chastotno-reguliruemyy-asinhronnyy-elektroprivod-kurs-lekciy.html

8.6 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по дисциплине

9 Таблица 7 – Перечень используемого программного обеспечения

Наименование ПО	Реквизиты / условия использования
Microsoft Imagine Premium	Лицензионный договор АЭ223 №008/65 от 11.01.2019
OpenOffice	Свободная лицензия, условия использования по ссылке:
	https://www.openoffice.org/license.html

9 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) — русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

9.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

9.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

9.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

9.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;

- · формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Перед выполнением обучающимися внеаудиторной самостоятельной работы преподаватель может проводить инструктаж по выполнению задания. В инструктаж включается:

- цель и содержание задания;
- сроки выполнения;
- ориентировочный объем работы;
- основные требования к результатам работы и критерии оценки;
- возможные типичные ошибки при выполнении.

Инструктаж проводится преподавателем за счет объема времени, отведенного на изучение дисциплины.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду организации.

9.5 Методические указания для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- · изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

10 Описание материально-технического обеспечения, необходимого для осуществления образовательного процесса по дисциплине (модулю)

а. Учебно-лабораторное оборудование

Таблица 8 — Перечень оборудования лаборатории

Аудитория	Наименование аудитории (лаборатории)	Используемое оборудование
107/3	Лаборатория систем управле-	Лабораторные стенды
	ния электроприводами	

b. Технические и электронные средства обучения

При проведении занятий используется аудитория, оборудованная проектором (стационарным или переносным) для отображения презентаций. Кроме того, при проведении лекций и практических занятий необходим компьютер с установленным на нем браузером и программным обеспечением для демонстрации презентаций.

11 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- · в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- · в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- · письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- · выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.

Лист регистрации изменений к РПД

№ п/п	Номер протокола заседания кафедры,	Количество страниц	Подпись автора
	дата утверждения изменения	изменения	РПД
	На 2021/2022 учебн	ый год	
1	Изменение количества аудиторных часов и СРС.	Стр. 4-7	
	Основание: Рабочий учебный план на 2021/2022 учебный год		
2	Воспитательная работа обучающихся. Основание: Федеральный закон от 31.07.2020 N 304-ФЗ "О внесении изменений в Федеральный закон "Об образовании в Российской Федерации" по вопросам воспитания обучающихся"	Стр. 4	
3	Практическая подготовка обучающихся. Основание: Приказ Министерства науки и высшего образования Российской Федерации, Министерства просвещения Российской Федерации от 05.08.2020 г. № 885/390 "О практической подготовке обучающихся"	Стр. 4	
4	Актуализация литературы	Стр. 22	
5	Актуализация перечня ресурсов Интернет, необходимых для освоения дисциплины	Стр. 23	